Manual Therapy, Posturology & Rehabilitation Journal
http://mtprehabjournal.com/article/doi/10.17784/mtprehabJournal.2016.14.312
Manual Therapy, Posturology & Rehabilitation Journal
Research Article

Joint immobilization: effects on bone tissue of obese and malnourished animals.

Rissi, Renato; Lemos, George Azevedo; Pires, Ivan Luiz de Souza; Camargo, Rafael Ludemann; Palomari, Evanisi Teresa

Downloads: 0
Views: 382

Abstract

Introduction: The immobilization induces an unbalanced bone metabolism, followed by rapid bone loss and consequent loss of the mechanical function of the bone. In general, the obesity and protein malnutrition conditions affect a large number of people worldwide, and both morbidities have specific characteristics that may cause deleterious effects on bone tissues of patients by different mechanisms. Objective: the present study aimed to verify experimentally if the joint immobilization protocol causes bone tissue atrophy in obese and undernourished animals. Method: 20 adult male mice (C57/BL6) were used, divided into four groups (N=5): Control Group (CG), Immobilized Control Group (ICG), Immobilized Obese Group (IOG) and Immobilized Malnourished Group (IMG). The histomorphometric analysis of the tibia quantified the number of osteocytes, cortical thickness and diameter of the medullary canal. Results: The study involving the tibia of the animals showed statistical differences in variables analysis. All immobilized groups showed lower amount of osteocytes in the evaluated tissue and increase in diameter of the spinal canal when compared to the CG. The cortical thickness was reduced in ICG and IMG groups when compared to the CG. Conclusion: The used joint immobilization protocol caused bone atrophy in the studied animals. The association between obesity, malnutrition and joint immobilization conditions cause increase in bone tissue atrophy.

Keywords

Immobilization, Obesity, Protein Malnutrition, Atrophy

References

1. Cornwall MW. Biomechanics of non-contractile tissue: a review. Phys Ther. 1984;63:1869-73.

2. Trebacz H. Disuse-induced deterioration of bone strength is not stopped after free remobilization in young adult rats. J Biomech. 2001;34:1631-36.

3. Dittmier DK, Teasell R. Complications of Immobilization and bed rest. Part 1: Musculoskeletal and cardiovascular complications. Can Fam Physician. 1993;39:1428-32, 1435-37

4. World Health Organization (WHO). Nota descritiva Nº311: Obesidade e Sobrepeso. WHO; 2015. [Internet]. [Acesso em: 24 mar. 2015] Disponível em: http://www.who.int/mediacentre/factsheets/fs311/es/.

5. Brasil. Ministério da Saúde (MS). Secretaria de Vigilância em Saúde. Departamento de Vigilância de Doenças e Agravos não Transmissíveis e Promoção de Saúde. Vigitel Brasil 2012: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico. Brasília: 1º ed. MS; 2013.

6. Mello ED, Luft VC, Meyer F. Atendimento ambulatorial individualizado versus programa de educação em grupo: qual oferece mais mudanças de hábitos alimentares e de atividade física em crianças obesas? J. Pediat. 2004;80(6):468-474.

7. Monteiro CA. A dimensão da pobreza, da fome e da desnutrição no Brasil. Estud. Av. 2003;17(48):7-20.

8. FAO (Organização das Nações Unidas para a Alimentação e Agricultura). O estado da segurança alimentar e nutricional no Brasil: Um retrato multidimensional. Brasília: FAO; 2014.

9. Recine E, Radaelli, PC. Obesidade e desnutrição. Brasília; 2001. Depto de Nutrição da Faculdade de Ciências da Saúde da Universidade de Brasília (FS/ UnB) e a Área Técnica de Alimentação e Nutrição do Departamento de Atenção Básica da Secretaria de Política de Saúde do Ministério da Saúde (DAB/SPS/MS). [Internet]. [Acesso em: 22 mar. 2015] Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/obesidade_desnutricao.pdf

10. Compston JE, Laskey MA, Croucher PI, Coxon A, Kreitzman S. Effect of diet-induced weight loss on total body bone mass. Clin Sci. 1992;82(4):429-32.

11. Ricci TA, Chowdhury HA, Heymsfield SB, Stahl T, Pierson RNJr, Shapses SA. Calcium supplementation suppresses bone turnover during weight reduction in postmenopausal women. J Bone Miner Res. 1998;13(6):1045-50.

12. Schurch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture: A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1998;128:801–9.

13. Zar JH. Biostatistical Analysis. 5º ed., New Jersey: Prentice Hall, 2010.

14. Sokal RR, Rohlf FJ. Biometry: the Principles and Practice of Statistics in Biological Research. 4º ed., New York: WH Freeman, 2012.

15. Silva AV, Volpon JB. Modelo de suspensão pela cauda e seu efeito em algumas propriedades mecânicas do osso do rato. Acta Ortop Bras. [online]. 2004;12(1):22-31.

16. Yeh JK, Liu CC, Aloia JF. Effects of exercise and Immobilization on bone formation and resorption in young rats. Am J Physiol. 1993;264:182-89.

17. Weinreb M, Rodan GA, Thompson DD. Osteopenia in the immobilized rat hind limb is associated with increased bone resorption and decreased bone formation. Bone. 1989;10:187-94.

18. Kiratli BJ. Immobilization osteopenia. In: Marcus R, Feldman D, Kelsey J. Osteoporosis. Academic Press: New York; 1996. p.833–853.

19. Frost HM. Skeletal structural adaptation to mechanical usage (SATMU): 2. redefining Wolff’s Law: the remodeling problem. Anat Rec. 1990;226:414–22.

20. Portinho D, Boin VG, Bertolini GRF. Efeitos sobre o tecido ósseo e cartilagem articular provocados pela imobilização e remobilização em ratos wistar. Rev Bras Med Esporte. 2008;14(5):408-11.

21. Brandalize M, Leite N. Alterações ortopédicas em crianças e adolescentes obesos. Fisioter. Mov. 2010;23(2):283-88.

22. Wang MC, Bachrach LK, Van-Loan M, Hudes M, Flegal KM, Crawford PB. The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone. 2005;37:474–81.

23. Fogelholm GM, Sievanen HT, Kukkonen-Harjula TK, Pasanen ME. Bone mineral density during reduction, maintenance and regain of body weight in premenopausal, obese women. Osteoporos Int. 2001;12(3)199-206.

24. Shapses SA, Von-Thun NL, Heymsfield SB, Ricci TA, Ospina M, Pierson RNJr, et al. Bone turnover and density in obese premenopausal women during moderate weight loss and calcium supplementation. J Bone Miner Res. 2001;16(7):1329-36.

25. Santos-Junior FFU, Alves JSM, Machado AAN, Carlos OS, Ferraz ASM, Barbosa R, et al. Alterações morfométricas em músculo respiratório de ratos submetidos à imobilização de pata. Rev Bras Med Esporte. 2010;16(3)215-18.

26. Canalis E, Agnusdei D. Insulin-like growth factors and their role in osteoporosis. Calcif Tissue Int. 1996;58:133–34.

27. Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15:80–101.

28. Vandehaar MJ, Moats-Staats BM, Davenport ML, Walker JL, Ketelslegers JM, Sharma BK, et al. Reduced serum concentrations of insulin-like growth factor-I (IGF-I) in protein-restricted growing rats are accompanied by reduced IGF-I mRNA levels in liver and skeletal muscle. J Endocrinol. 1991;130:305–12.

29. Thissen JP, Davenport ML, Pucilowska JB, Miles MV, Underwood LE. Increased serum clearance and degradation of 125I-labeled IGF-I in protein-restricted rats. Am J Physiol. 1992;262:406–11.

30. Musey VC, Goldstein S, Farmer PK, Moore PB, Phillips LS. Differential regulation of IGF-1 and IGF-binding protein-1 by dietary composition in humans. Am J Med Sci. 1993;305:131–38.

588167eb7f8c9d710a8b45da mtprehab Articles
Links & Downloads

Man. Ther., Posturology Rehabil. J.

Share this page
Page Sections